Sampling Gaussian Distributions in Krylov Spaces with Conjugate Gradients

نویسندگان

  • Albert Parker
  • Colin Fox
چکیده

This paper introduces a conjugate gradient sampler that is a simple extension of the method of conjugate gradients (CG) for solving linear systems. The CG sampler iteratively generates samples from a Gaussian probability density, using either a symmetric positive definite covariance or precision matrix, whichever is more convenient to model. Similar to how the Lanczos method solves an eigenvalue problem, the CG sampler approximates the covariance or precision matrix in a small dimensional Krylov space. As with any iterative method, the CG sampler is efficient for high dimensional problems where forming the covariance or precision matrix is impractical, but operating by the matrix is feasible. In exact arithmetic, the sampler generates Gaussian samples with a realized covariance that converges to the covariance of interest. In finite precision, the sampler produces a Gaussian sample with a realized covariance that is the best approximation to the desired covariance in the smaller dimensional Krylov space. In this paper, an analysis of the sampler is given, and we give examples showing the usefulness and limitations of the Krylov approximations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An asymptotically optimal gradient algorithm for quadratic optimization with low computational cost

We consider gradient algorithms for minimizing a quadratic function in R with large n. We suggest a particular sequence of step-lengthes and demonstrate that the resulting gradient algorithm has a convergence rate comparable with that of Conjugate Gradients and other methods based on the use of Krylov spaces. When the problem is large and sparse, the proposed algorithm can be more efficient tha...

متن کامل

Lanczos and Linear Systems Lanczos and Linear Systems

abstract Lanczos's major contributions to the numerical solution of linear equations are contained in two papers: \An Iteration Method for the Solution of the Eigenvalue Problem of Linear Diierential and Integral Operators" and \Solutions of Linear Equations by Minimized Iterations ," the second of which contains the method of conjugate gradients. In this note we retrace Lanczos's journey from ...

متن کامل

Preconditioned Krylov Subspace Methods for Sampling Multivariate Gaussian Distributions

A common problem in statistics is to compute sample vectors from a multivariate Gaussian distribution with zero mean and a given covariance matrix A. A canonical approach to the problem is to compute vectors of the form y = Sz, where S is the Cholesky factor or square root of A, and z is a standard normal vector. When A is large, such an approach becomes computationally expensive. This paper co...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Preconditioned Methods for Sampling Multivariate Gaussian Distributions

A common problem in statistics is to compute sample vectors from a multivariate Gaussian distribution with zero mean and a given covariance matrix A. A canonical approach to the problem is to compute vectors of the form y = Sz, where S is the Cholesky factor or square root of A, and z is a standard normal vector. When A is large, such an approach becomes computationally expensive. This paper co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2012